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PR0pELI;ER LIFT AND TEKUST D I S T R m I O M  FROM WAKE 

SURVEYS OF STAGRATION COMDITIOIBS 

. B y  Robert  E. Davidson 

SUMMARY 

The Bernoulli  equation f o r  nonsteady f l o w  w a s  used to  derive 
formulas f o r  propeller l i f t  and thrust d is t r ibu t ion   in  -terms of wake- 
survey measurements of stagnation  pressure  rise  through  the  propeller. 
Lif t   d is t r ibut ions and over-all  values of thrust from wake survey were 
compared wfth  direct measurements of these  quantities at stream Mach 
numbers up t o  0.65. 

I 

a. 

In 'reference 1, Lock and Yeatman derive 'the formula fo r  propeller 
F. t h rus t   i n  terms of wake-survey  measurements. Their formula i s  the same 

as i s  obtained from momentum consiwat ions,   but  the method of derivation 
is believed t o  give  greater insight into  the mechanics of the wake survey. 
The analysis of Lock and Yeatman,.although  complicated'at the start by 
the introduction of the  velocity  potential,  develops the thrus t  formula 
i n  a logical  manner fo r  a f i n i t e  number of blades and periodic flow. 
'From this development it appears that   thrust   d is t r ibut ion is  not  the 
only thing whi.ch the wake survey i s  capable of measuring.  For instance, 
it can  be  deduced that lift distribution i s  given more naturally by the 
wake survey  than  thrust.  Reference 1 shows that  the  derivation of the 
thrust  formula actually  involves  neglecting  the  induced  angle of attack; 
i n   f a c t ,  once t h i s  assumption is made, the wake survey  can . just   as 
reasonably  be  used t o  measure torque  as  thrust. ! 

I n  t h i s  paper it is. shown that the wake-survey formulas may be 
modified f o r  compressible flow without  very  complicating  changes i n  
form. A s  in'refgrence 1, .the  total-pressure  survey,tube i s  recognized 

L 88 measuring the  time  rate o f  change of $he velocitg  potential. If  
advantage is  taken of the   fac t  that pressure changes .are emall i n   t h e  
f l o w  about a propeller, the 'wake-survey formulas for compressible flow 
remain  simple i n  form. ! 

I 

I 
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number of blades 

blade chord 

power coefficient 
(p1:3D5) 

thrust   coefficient 
(Pl:2D$ 

section l i f t  coefficient 

section normal-force coefficient' 

section power coefficient ( d ~ p / d ~ )  

section  thrust   coefficient ( ~CT/CI.X) 

propeller di-ameter " 

I 

. " 

.. 
E = - f p  d($ 

m=- 7 - 1  (See .equation (9) . ) 
7 

J advance r a t i o  ( v / ~ D )  

M, advance Mach  number 

% helical   section Mach number ( M m 1 + 

n rotat ional  speed, reSolutions i n   u n i t  time 



P s ta t ic   pressure 

" 

P t  stagnation  pressure 

r - . radius f r o m  the  rotational  axis t o  8 point  in  the flow . .  

- T  ' thrust  1 .  

t . time 

v advance velocity, 

W resul tant   veloci ty  of a propeller  section 

WO velocity  vector  (see  f ig.  1) 

W f luid  veloci ty  

X radius divlded by propeller radius 
. (A) 

r circulation 

P mass density 

P t  

# velocity  potential  

- . .  

stagnation  density , 

L 

a -  rotat ional  speed, radians i n  unit tlme 

7 time  between bladels passing a survey  tube (2n/Bo) 

7 .  r a t i o  of specific  heats 

AP, stagnation  pressure  r ise through propeller 

Subscrfpts: 

3 

' 1  denotes  free  stream  condition far ahead of propeller or  at  
8ome place where flow i s  pract ical ly ,s teady 

t 

curly  brackets [ [ are used t o  show that a 'time  average is 
taken -. - .  

! 
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DERIVATIONS 

ow f ie ld  about a propeller, as f 
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or a w i n g ,  is i r ro ta t iona l  
with the  exception  of the thin  surfaces of rotational flow which trail 
f rom the  blades as a result   of-viscosity. .  When the effect of the blade 
wakes  on a survey  tube i s  neglected by assuming the flow t o  be all 
irrotational,   the  velocity, ' the  velocity  potential ,  and the  s ta te  
functions of the  gas must satisfy:  

where 

E = - --Jp . a( l / p )  

where I' i s  the  circulation a t  a particular  radius and i s  equal t o   t he  
jump i n  fl across a trail ing  vortex sheet a t   tha t   rad ius   in   the  wake. 

The re la t ion  between pressure and density i s  assumed t o  be as 
follows : 

and the  coordinate  system is  fixed  to  the.survey  rake. 

Observe that  for  the  propeller wake survey,  unlike the wing, the 
i r rotat ional  flow outside the vortex  sheets.-is  surveyed-and  the measur- 
able  forces  are  those  arising  primarily from circulation  rather  than 
viscosity. - 

Equation (1) is applicable t o  tht.compressible flow past  a p,ropeller 
ki th  no res t r ic t ion  on the magnitude  of the  velocities  except that the 
velocity  potential # must exist .  This equation  appears on page 20 
of reference 2. 

.I 

For a compressible flow the followlng relat ion s$il l  holds: 

I 

" - Constant (4) 
P7 

which is  known t o  be a good assumption for  practical  problems in   t he  
aerodynamics of  compressible flows.. 
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I n  cortrpressible flow the change :Ln velocity  potential  between the 
departure and a r r iva l  of a vortex  sheet at a total-pressure  tube of the 
survey  rake  (see  fig. 1) i s  s t i l l  equal t o  the jUmp across  a-vortex 
sheet which’ i s  equal t o  the c i rcu la t ion ,   a l l  at a pazticular radius. 
Therefore,  the  .reasoning of  reference l w i t h  equations (l), ( 3 ) ,  and 
(4) gives  for  conditions a t  a total-pressure  tube  behind  the  propeller 

whereas, far upstream, 

and F ( t )  = 0 because it i s  zero far ahead where the flow i s  steady. 

Equation (4) substi tuted in equation (2) gfves 

7 - l P  Po 

- where p0, P, represent same ini t ia l   s ta te .   Subtract ing  equat ion ( 6 )  
f r o m  equation ( 5 )  and using  the expressfon f o r  E gives 

L 

The stagnation  density P t  behind the propeller I s  replaced by using 
. equation (4) t o   e v e  

When this equation i s  substt tuted  in  equation (7 ) ,  the l a t t e r  takes the 
f om: 

i 

. 



Although  equation (8) g i v e s - t e   c i r c u l a t i o n   i n . t e m s  of t o t a l -  
pressure measurements alone, it 5s desirable t o  be able  to use the 
reading of an  ordinary  liquid manometer which i s  usually assumed to 
give { ~ , f ,  rather  than the averaged  quantity i n  equation ( 8). A binomial 

expansion of p t  will avoid the difficulty.  Only one term of the 
series need  be retained  in  order  to be i n  keeping with the  'error  in,   the 
experimental measurement of pt .  Retaining this term  leads t o  a formula 
which permits easy camputatton of the lift f'rom total-pressure measure- 
ments with a l iquid manometer. 

- 7 -1 

Let: 

then  equation (8) becomes 

and with the expansion of' (1 + h)m -this becomes the alternating series 

In t r y i n g  t o  see the relative-nagnitude of  the  terms, it i s  helpful 
t o  make the exponent i n  the second term of equation (10) appear on the 
outside  rather  than  the.  inside of the  curly  brackets. For this purpose, 
some assumption,is  necessary  as  to the form aP-h.  

Measurements -with  instantaneous  t-otal-pressure  measuring  devices 
indicate  that  the  total-pressure  variation w i t h  time between vortex 
sheets i s  approximately  parabolic. A typical measurement of this kind 
is  shown in   f igure  2(a). The pertine&'parts  of  the  record  are shown 
i n  figure 2(b). As would be expected?  the  total-pressure  increment Apt 
apparently  never come8  down t o  zero a t  the midpoints. However, a 

~ - -. 
I 
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this does happen as shown 
the paP8bola i s  a t  4 4  = 0. 
as represented in figure 2(c),  
independent, i n  fact 

conservative  simplifying  assumption i s  that 
in   f igure   2 (c) ,   tha t  is, that the  origin'of 
With the assumption-that h varies  i n  time 
the-  quantitiea [ hj2 and fh2f are no longer 

I 
as  some simple integrations will show. Equation (10). then becomes 

L For the  values I , 

m=-= - 0.286. 
7 

P t l  = 2000 pounds per  square  foot 

' fAptj = 20 pounds per square foot 

* ihj =-0.01 . . 

- 
which give a consegat ively heavy disk loading,  equation ( l l )  becomes 

-="  r 1 - P t l  k.00286 . - 0.000018 + . . 4 
.m P t l  

Therefore, the er ror  -when retaining only the first term i n  equation (11) 
it3 less than 

I 

o*oooo18 = 0.0063 or  0.6 percent 
0.00286 

I 

It follows tha t ,  t o  a good approximation, 
. .  

! 

. .  

I 
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Equation (12) *gives  the  circulation  distribution from eas i ly  
measured quantities. The bracketed  term i s  obtained  directly from a 
l iquid manometer, whereas ptl is the stagnation  density i n  the 
undisturbed stream. 

L i f t  coefficient. - The lift distribution is easily  obtained from 
.equation (12) . The time for  one blade t o  succeed the preceding one i s  
the same as the time between passages of the vortex sheets a t  a t o t a l - .  
pres sure tube;  theref  ore, 

Then equations ( 3 )  and (13) substituted  in  equation (12) give 

with which the l i f t  coefficient may be calculated from stagnation 
measurements. 

With the  excellent  approximation  that- - W  = Wo (see fig. l), the 
l a s t  equation may be solved  for cz - 

J M 
C?. = 

B( b/D) /w v2 

I 

which -is the  formula with which cz was calculated-in  f igure 3. This 
formula will give  slightly low values' of cz depending upon the  extent 
t o  which profile  drag  influences the readings of the  total-pressure 
tubes. Because the  radical  expresses the section  velocity at the blade, 
x must-be a t  the blade w i t h  no correction  factor  concerning  the  slip- 
stream  contraction. 

Thrust.- By projection of the l i f t  i n  the forwaxd direction,  the 
thrust  may be found from equation (14). The induced  angle % (see . 



I 

NACA RM L51K29 - 9 

f ig .  1) and the drag are neglected.. The formula for t he . loca l  thrust 
coeff ic ient   in  compressible flow i s  then 

. .  

which is the same as the formula a t  the bottom of page 6 in reference ' 3 .  

Integration of equation (15) give0 the ov&-all thrust coefficient 
CT shorn. i n  figure 4. . 

For incompressible flow, equatlori (15) reduces t o  the :well-known ' 

formula f o r  thrust 

dT 
d r '  

- =  Gfap,j 2 -30 (16) ;?, 
which is-obtained f r o m  the momentum theorem for  incompressible flow. 
The substi tutions 

dT = pln 2 4  D dCT 

e v e  equation (16) in notation comparable nLth equatfon (15) : 

Equation (l7)'is for  incmpressible flow. E&tions (15) and (17) are  
the same for  incompressible-flow  because, in tbis case, the  denaities 
pil and p1 are. equal and d l  other'terms are the same. Thus,. the 
only change ne'eded rto make the  established thrust formula (17) -apply to 
compressible flow.is the substi tution of stagnation, demity ptl fo r -  
stream density pl. 

Formula (16) i s  knpm to. neglect the rotat ion of the slipstream 
when derived from momentum thoery. Formula (16) neglects  thf!  slipstream 
rotat ion and formula (15) neglects the induced angle of attack. 
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C O M F ~ I S O N  OF WAKE-SURVEY RFSULTS W I T H ,  P m S S W  

AND OVER-ALL FORCE MEASUREMENTS 

An experimental check o f t h e  wake-survey formula (14) for  l i f t  
coefficient i s  possible. - Propeller. tests i n  which normal-force  coeffi- 
cients w e r e  obtained a t  various  .etatiow on a 10-foot-diameter  propeller 
have been made i n  the Langley 16-foot high-speed  tunnel. The normal- 
force  coefficients  are computed from direct  measurements of s ta t ic -  
pressure  distribution on sections of the rotating  propeller. Wake 
surveys were also made during  the sgne tests. - .. . 

Lift   coefficients from wake-survey meas&ements  'and formula (14) 
are compared with normal-force  coefficients from direct-measurements 
of s ta t ic   p ressures   in   f igwe 3.  The te-s ts  from which the data were 
taken axe reported i n  reference 4. In figure 3, sol id   l ines  are faired 
through  points  plotted.from wake-survey data.  Plotted  points  with 
crosses  through them denote  normal-force  coefficients  obtained from 
direct  static-pressure measurements on the blades. The points with 
crosses  should f a l l ' o n   t h e  faired linea  except  for  the small difference 
between c2 and  cn. The dashed l ines  are f a i r ed   i n  through rad ia l  
stations where a given  sectional Mach  nuniber prevails. Disagreement 
is  seen t o  cane i n  around Mx = 1.0. 

.In  f igure 4, thrust  from wake-suryey formula. (15) i s  compared 
with  direct   thrust  measurements. The conperison i s  notkas  thorough a8 
that   for   the l i f t  coefficient  because  only  the  .integrated  value of the 
wake-survey thrust  i s  shown.  The tests From which the  data were taken 
me report-ed i n  reference 5,. The agreement i s  fa i r -up   to   the   h ighes t  
advance Mach  number tested. . .  

CONCLUDING REMARKS 

Wake-survey formulas were presented which are  applicable  to 
compreesible flow and convenient for computation i f  a s l igh t  degree of 
appr'oximation is accepted. The usefulness of the wake survey  has always 
been in   the  ease with which force  distribution may be obtained f 'rom 
easily measured quantities.  Therefore, a small sac r i f i ce   i n  accuracy 
was considered  worthwhile-in view of the resulting  simplification of 
computations. 

As long as a velocity  pot:ential  exists no  Mach  number' res t r ic t ions - 
are required. However, i f -  for same reason  the  flow becomes .seriously 

c 

I 
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rotational,  -the  formulas  presented &e i n   e r r o r  by some indeffnfte 
amount. 

Langley Aeronautical  Laboratory 
National Advisory Cmmlttee for  Aeronautics 

Langley  Fikld, Va. 
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Figure 1.- Schematic  diagram of propeller wake and eurvey  eetup, with 
, diagran of- velocities at the blade. 
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Figure 4.- Comparison of m a t  coefficient from wake s w e y  with that 
from over-all force  test. 
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